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Example: Château d’Oex Camera, 17.06.2016
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Example: Château d’Oex Camera, 17.06.2016
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Example: Château d’Oex Camera, 17.06.2016
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Example: Château d’Oex Camera, 17.06.2016
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Example: Château d’Oex Camera, 17.06.2016
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Example: Château d’Oex Camera, 17.06.2016
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Example: Château d’Oex Camera, 17.06.2016
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Example: Château d’Oex Camera, 17.06.2016
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Introduction: Motivation and Current State at MeteoSwiss

Physical Model Approach

Evaluation

Improving the Camera System

Improving the Estimation Algorithm: Learning Approach

Outline
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1. Increase spatial and temporal resolution of visibility observations

2. Generate additional benefit from existing camera network

3. Panorama cameras see more of the atmosphere than 

scatterometers: 

→ Potential for estimates that are more representative when the 

atmosphere is inhomogeneous

Motivation
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35 cameras, many along GAFOR routes

12 cameras provide estimates of the 

prevailing visibility every 10 min

- Operative since October 2018

- Provided on «best effort» basis only

Limited scope:

- Assist forecasters with GAFOR 

production

- Data is restricted to internal use

Our Current State

MeteoSwiss camera network (as of May 2020),

visibility is estimated at stations highlighted in red
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Introduction: Motivation and Current State at MeteoSwiss

Physical Model Approach

Evaluation

Improving the Camera System

Improving the Estimation Algorithm: Learning Approach

Outline



15

1. Dark Channel prior: most local patches in haze-

free images contain pixels with low intensities in 

at least one channel  [He et al., 2011]

2. Airlight scattered into line of sight raises 

minimum intensity  [Koschmieder, 1924]

3. Atmospheric scattering coefficient is inversely 

related to visibility

Motivation:

- Avoid tuning/adaptation for every camera site

- Well understood behavior of estimation algorithm

Physical Model Approach

𝐿(𝑑) = 𝐿∞(1 − 𝑒−𝜎𝑑)

𝑣 ∝ ൗ1 𝜎
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- Known geolocation coordinates 

of cameras

- Visual matching of additional 

degrees of freedom

Alternative: Pose estimation from correspondence points  [Haralick et al., 1989]

Generating the Depth Map

Tool for generating depth maps by visual correspondence
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Extension of [Sutter et al., 2016]

Estimation Method

Input image Dark channel

Depth map

Robust quantile

regression of airlight

𝑣 ∝ ൗ1 𝜎

(white bands are due to edge suppression)
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Introduction: Motivation and Current State at MeteoSwiss

Physical Model Approach

Evaluation

Improving the Camera System

Improving the Estimation Algorithm: Learning Approach

Outline
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Comparison with trained observers, labeling the prevailing visibility of  

panorama sequences:

Evaluation Methodology

Labeling tool, presenting evaluation sequences in randomized order
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- 238 panoramic sequences in total

- Representative selection of sites: 

Swiss plateau, valleys, mountain 

tops

- Considers all seasons and many 

different weather and ground 

conditions

Evaluation Data
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In general, algorithmic estimates are within observers’ uncertainty:

But there are systematic deviations for certain conditions

Evaluation Results

Expert 1

Expert 2

Expert 3

Algorithm

GAFOR states

O – Open

D – Difficult

M – Marginal

C – Closed

26 images from the Château d’Oex camera
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Introduction: Motivation and Current State at MeteoSwiss

Physical Model Approach

Evaluation

Improving the Camera System

Improving the Estimation Algorithm: Learning Approach

Outline
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Enclosure:

- Mis-alignment of moving head

- Occlusions

Image acquisition:

- Stray light in lens

- Saturation of dynamic range

Image processing:

- Compression artefacts 

- Artificial edge enhancement

Failure Cases Related to Camera System

Camera on top of

Mount Corvatsch
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On-going WTO procurement to replace existing cameras:

- Further hardening against weather exposure: 

increased heating power, mechanical robustness, ...

- Increased sensor dynamic range and resolution

- Raw image acquisition: defined white balance, 

disabling image “enhancements” (denoising, local 

contrast enhancement, ...), lossless compression

Renewal of Camera Network
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Introduction: Motivation and Current State at MeteoSwiss

Physical Model Approach

Evaluation

Improving the Camera System

Improving the Estimation Algorithm: Learning Approach

Outline
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Complex atmospheric conditions that don’t fit the physical model 

assumptions:

Failure Cases Related to Estimation Algorithm
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Increase model flexibility with learning based 

approach:

- Neural network classifies pixels as in front or 

behind the visibility limit

- Expert labels: segmentation into visible and 

non-visible regions

- Train network to predict label mask

Goal: View independent model, no need for 

adaptation/tuning to different sites

Improvements to Estimation Algorithm
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Transformation of input image and depth map across 

several layers into visibility mask:

DNN Classifier Architecture

ResNet-18

architecture
[He et al., 2016]

Input image

Depth map

Visibility mask
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- Secondary use of existing infrastructure improves ROI

- Have to compensate for design choices that are not ideal for 

secondary application

- We have an operational pipeline for visibility estimation

- It takes effort from acceptable performance on average to 

eliminating all failure cases

- Investment in sensor system pays off at later stages

Summary and Conclusions
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Operational availability:

- Monitoring: automated and feedback from users

- Maintenance of cameras, often in remote locations

- Robust software that can deal with various failures: data availability 

and integrity

- Automated, but still needs personel resources for first, second and 

third level support

Summary and Conclusions
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