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Categorical plausibility information: 
• Define categories of test failures (physical impossibility, climatological 

limits, …) 
• Record failure category with each measurement 
 
+ Straightforward representation 
– Test outcomes have different evidence-strength 
– Hard to integrate in customer application 

In a Nutshell: Legacy Data Model 
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Continuous plausibility information: 
1. Store individual test outcomes (both “pass” and “fail”) 
2. Compute probabilistic plausibility: chance that measurement would 

pass expert inspection, given all test outcomes 
 

+ Test outcomes contribute according to their evidence 
+ Customer sets plausibility threshold 0 - 100 % for their application 
– Needs computation to obtain probabilistic plausibility 

In a Nutshell: Proposed Data Model 
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An overview of the modernization of our complete data processing 
chain: 
 
 
 
 
 
 
 
 
 
“Next Generation of Quality Management Tools at MeteoSwiss”, 
presented by Marc Musa in Session 2 on Thursday 

The Bigger Picture 
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1. Introduction 
2. QC at MeteoSwiss 
3. Probabilistic plausibility: 

• Prior 
• Test likelihood 
• Posterior 
• Combining multiple test outcomes 
• Integrating expert inspections 

4. Toy examples 
5. Discussion 

Overview 
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Independent components that contribute to data quality 
 
Automated QC testing in several stages of data processing chain: 
1. Instrument 
2. Collection 
3. DB import 
4. Post-import: hourly, daily, …, to seasonal 

 
Logical rules:   Data driven:          Expert inspection: 

Quality Control at MeteoSwiss 
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Our legacy data model records what happened: measurement failed 
test of category 
1. Physical impossibility 
2. Climatologically unlikely 
3. Inconsistent to another parameter 
4. Spatially inconsistent 

 
But what does that imply: how serious is a test error?  
 
Categories 2 – 4 are difficult to interpret -> most customers only make 
use of physical impossibility information. 
 
Goal: Make quality information usable. For example “If a measurement 
failed this test in the past, it was deemed implausible by the expert 2 out 
of 3 times.” 

Legacy Quality Information 
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1. Introduction 
2. QC at MeteoSwiss 
3. Probabilistic plausibility: 

• Prior 
• Test likelihood 
• Posterior 
• Combining multiple test outcomes 
• Integrating expert inspections 

4. Toy examples 
5. Discussion 

Overview 
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Automated tests are incomplete and create false alarms. 
 
How do test outcomes contribute evidence about measurement 
plausibility? 
 
 
 
 
 

Test Outcome Evidence 
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Test passed Test failed 

Data plausible True negative (TN) False positive (FP) 

Data implausible False negative (FN) True positive (TP) 
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Definition of plausibility:  
• A measurement is plausible if it would pass expert inspection. 
• An implausible measurement would either be rejected or corrected by 

the expert. 
 
Expert inspection is our gold standard and by definition has full evidence 
strength: We assume that experts don’t commit false negative and false 
positive errors. 

Plausibility 
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Probabilistic plausibility before automated testing and inspection: 
 

𝑝𝑝 𝑞𝑞 = 1 = 1 − 𝑝𝑝 𝑞𝑞 = 0  
 
𝑞𝑞 ∈ 1,0 : measurement is plausible or implausible 
 
Example: 𝑝𝑝 𝑞𝑞 = 1 = 0.99 corresponds to 1 in 100 chance that 
measurement would fail expert investigation. 
 
Interpretation depends on: 
• Measurement frequency: 𝑝𝑝 𝑞𝑞 = 1 = 0.99 considered «okay» for daily 

observations, but «terrible» for automated 10 min measurements 
• Customer application 
 

Prior Plausibility 𝑝𝑝(𝑞𝑞) 
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Estimated by counting: 
 

𝑝̂𝑝 𝑞𝑞 = 1 = 1 −
|ℐ|

|ℳ|
  

 
ℳ: set of all tested measurements 
ℐ ⊆ ℳ: implausible measurements 
 
Subjective estimates are also possible. 
 

 
 

 
 

Estimating the Prior Plausibility 
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Likelihood of test outcome given the plausibility of the measurement: 
 
 
𝑡𝑡 ∈ {1,0}: test outcome «passed» or «failed» 
 
• Tests with low false positive rate 𝑝𝑝 𝑡𝑡 = 0 𝑞𝑞 = 1  provide strong 

evidence for implausible measurements. 
• Tests with low false negative rate 𝑝𝑝 𝑡𝑡 = 1 𝑞𝑞 = 0  provide strong 

evidence for plausible measurements. 
 
Estimated by counting inspected test outcomes 
 

Test Likelihood 𝑝𝑝(𝑡𝑡|𝑞𝑞) 
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 𝑝𝑝(𝑡𝑡|𝑞𝑞) 



14 

Probabilistic plausibility after automated testing and/or inspection: 
 
 
Computed from prior and test likelihood using Bayes’ rule: 
 
 
 
• Test outcome either increases or decreases the prior plausibility 
• Normalization of posterior is trivial to compute (in our case) 

Posterior plausibility 𝑝𝑝(𝑞𝑞|𝑡𝑡) 
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 𝑝𝑝(𝑞𝑞|𝑡𝑡) 

 𝑝𝑝(𝑞𝑞|𝑡𝑡) ∝ 𝑝𝑝(𝑡𝑡|𝑞𝑞)𝑝𝑝(𝑞𝑞) 
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Compute posterior plausibility given multiple test outcomes as 
 

 𝑝𝑝(𝑞𝑞|𝑡𝑡1, 𝑡𝑡2) ∝ 𝑝𝑝(𝑡𝑡1, 𝑡𝑡2|𝑞𝑞)𝑝𝑝(𝑞𝑞) 
 
Naïve Bayes assumption: Test outcomes are conditionally independent 
 

  𝑝𝑝 𝑡𝑡1, 𝑡𝑡2 𝑞𝑞 = 𝑝𝑝 𝑡𝑡1 𝑞𝑞 𝑝𝑝 𝑡𝑡2 𝑞𝑞  
 
→ Posterior computed from product of individual test likelihoods: 
 

 𝑝𝑝(𝑞𝑞|𝑡𝑡1, 𝑡𝑡2) ∝ 𝑝𝑝(𝑡𝑡1|𝑞𝑞)𝑝𝑝(𝑡𝑡2|𝑞𝑞)𝑝𝑝(𝑞𝑞) 
 
 

Multiple Test Outcomes 
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1. Introduction 
2. QC at MeteoSwiss 
3. Probabilistic plausibility: 

• Prior 
• Test likelihood 
• Posterior 
• Combining multiple test outcomes 
• Integrating expert inspections 

4. Toy examples 
5. Discussion 

Overview 
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Prior 𝑝𝑝(𝑞𝑞): 
 
 

Assumption: 2 % of all measurements are implausible 
 
Likelihood 𝑝𝑝(𝑡𝑡1|𝑞𝑞): 
 
 
 
 
Assumption: 0.1 % of all implausible values fail physical limits 
 
Posterior:  
Plausibility after test failure: 𝑝𝑝 𝑞𝑞 = 1 𝑡𝑡1 = 0 = 0 
Plausibility after test pass: 𝑝𝑝 𝑞𝑞 = 1 𝑡𝑡1 = 1 = 0.98002 

Toy Example: Physical Limit Test 
Ex
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Plausible Implausible 
0.98 0.02 

Plausible Implausible 
Fail 0 0.001 

Pass 1 0.999 
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Prior 𝑝𝑝(𝑞𝑞): 
 
 
 

Likelihood 𝑝𝑝(𝑡𝑡2|𝑞𝑞): 
 
 

 
 

Assumptions:  
• 1 % false positive rate (by design) 
• 10 % of all implausible measurements fail climatological limits 
 

Posterior:  
Plausibility after test failure: 𝑝𝑝 𝑞𝑞 = 1 𝑡𝑡2 = 0 = 0.83 
Plausibility after test pass: 𝑝𝑝 𝑞𝑞 = 1 𝑡𝑡2 = 1 = 0.982 

Toy Example: Climatological Limit Test 
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Plausible Implausible 
0.98 0.02 

Plausible Implausible 
Fail 0.01 0.1 

Pass 0.99 0.9 
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Likelihood of climatological limit test 𝑝𝑝(𝑡𝑡2|𝑞𝑞): 
 
 
 
 
Likelihood of weaker test 𝑝𝑝(𝑡𝑡3|𝑞𝑞): 
 
 
 
 
Posterior:  
Plausibility after test failures: 𝑝𝑝 𝑞𝑞 = 0 𝑡𝑡2 = 0, 𝑡𝑡3 = 0 = 0.58 
Plausibility after test passes: 𝑝𝑝 𝑞𝑞 = 1 𝑡𝑡2 = 1, 𝑡𝑡3 = 1 = 0.983 

Toy Example: Combining Test Outcomes 
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Plausible Implausible 
Fail 0.01 0.1 

Pass 0.99 0.9 

Plausible Implausible 
Fail 0.02 0.07 

Pass 0.98 0.93 
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Expert corrects a false positive generated by climatological limit test: 
 
Before expert inspection: 
Plausibility: 𝑝𝑝 𝑞𝑞 = 1 𝑡𝑡2 = 0 = 0.83 
 
Likelihood of expert inspection 𝑝𝑝(𝑡𝑡4|𝑞𝑞): 
 
 
 
 
After expert inspection: 
Plausibility: 𝑝𝑝 𝑞𝑞 = 1 𝑡𝑡2 = 0, 𝑡𝑡4 = 1 = 1 

Toy Example: Expert Inspection 
Ex

am
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Plausible Implausible 
Fail 0 1 

Pass 1 0 
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1. Introduction 
2. QC at MeteoSwiss 
3. Probabilistic plausibility: 

• Prior 
• Test likelihood 
• Posterior 
• Combining multiple test outcomes 
• Integrating expert inspections 

4. Toy examples 
5. Discussion 

Overview 
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Storage: 
• Unknown or irrelevant test outcomes can be safely omitted 

 
Computation: 
• Posterior is a multiplication of a few terms 
• New tests can be introduced without recomputing existing posterior 

probabilities 
 
Inference: 
• Prior and test likelihoods estimated by simple counting of proportions 
• Conditional independence assumption of Naïve Bayes works well 
 
 

Practical Concerns 
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Probabilistic Plausibility: 
• Quantitative representation of measurement quality between 0 and 100 % 
• Combines prior information, multiple outcomes from automated tests and 

expert inspection 
• Each test outcome contributes according to its evidence strength 
• Efficient computation, scales to our surface DB (currently ~ 17 billion 

records) 
 

Project status: 
• Detailed concept complete 
• Preparation of new DB schema on-going 
• Plan to have probabilistic plausibility available in summer 2018 

 
 
 

Conclusions and Further Work 
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