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A Challenge and an Opportunity

The growing volume of surface data is 
both a challenge and an opportunity

Number of surface data records in 
the MeteoSwiss DWH
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A Challenge and an Opportunity

The growing volume of surface data is 
both a challenge and an opportunity:
• Only a tiny fraction of all surface data 

can be inspected manually 
→ Automated QC (AQC) must act as a 
powerful filter

r

MeteoSwiss data

Manual
11 %

Full AQC
17 %

Partial AQC
72%

Partner data On average 580
values are treated 
manually each day

Surface data series in 
the MeteoSwiss DWH
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A Challenge and an Opportunity

The growing volume of surface data is 
both a challenge and an opportunity:
• Only a tiny fraction of all surface data 

can be inspected manually 
→ Automated QC (AQC) must act as a 
powerful filter

• ML-based quality control works better if 
more data is available Daily precipitation sums are available 

for 510 sites in Switzerland
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Overview

Evaluation and Optimization of QC Tests
Learning to Combine Rain Gauge and Radar Data
Summarizing Quality Information with Naïve Bayes
Conclusion
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Before 2015, we employed a rule-based expert system (RBES), following 
WMO guidelines WMO (2012)

Rule-Based Quality Control

Hard and soft limits Variability limits
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Consistency

WMO (2012) "Guide to the Global Observing System"
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• Each test emulates specific aspects of expert inspection
• But it can miss implausible measurements and create false alarms

Statistical hypothesis testing:

→ Strong tests create few false positives and false negatives

How Well Does a QC Test Perform?

Measurement 
plausible

Measurement 
implausible

Test passed True negative (TN) False negative (FN)
Test failed False positive (FP) True positive (TP)
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Test based on the deviation from redundant 2 m temperature:

Increasing the allowable difference from 5 to 6 °C reduces false positives 
by an order of magnitude, while keeping almost all true positives

Trade-Off between True and False Positives
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Evaluation of our rule-set in 2015:
• “Simple” rules create none or few FPs, but miss 

many implausible values
• Some consistency rules generate an inacceptable 

number of FPs, even though they seem sensible
• Most FPs are created by a small number of rules
• Redundancy: only 35 % of rules generated test 

failures

→ Combine simple rules with data-driven ML models

Strengths and Weaknesses of RBES Knechtl et al. (2015)
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V. Knechtl, D. van Geijtenbeek and C. Sigg (2015) "A quantitative approach to optimise the quality control system for surface data at MeteoSwiss"
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Spatial Consistency of Rain Gauge Measurements

Combe-Garot (COG) on 2023-08-20: daily precipitation sum of 14.5 mm 
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Including the 24 h Radar Accumulation

Combe-Garot (COG) on 2023-08-20: daily precipitation sum of 14.5 mm 
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1. Withhold measurement under test
2. Predict using neighboring rain gauges 

and the radar field
3. Compare the measurement under test 

to the prediction
4. If the measurement is unlikely, given 

the prediction, create a QC case

QC by Cross-Validation
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Rain gauge network: Point 
measurements on the ground

Radar: Remote sensing of the 
atmosphere, resulting in spatially 
dense grid

Goal: Fuse both modalities into 
common representation

Challenge I: Different Data Modalities

Radar
Radar grid

Rain gauge
Point

measurements



16

• Rain gauges are dry in 85 % of 
the measurements

• If wet, the amount can be any 
positive value with one decimal 
resolution

Goal: Jointly model presence and 
magnitude of precipitation

Challenge II: Two-Part Statistical Distribution
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Probability of dry versus wet: 

𝑃 𝑦 > 0 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜋

Distribution of positive magnitude:

𝑃 𝑦|𝑦 > 0 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝜃)

Gamma-Hurdle Distribution

Gamma distribution plot © Dgamma25 – https://commons.wikimedia.org/wiki/File:Gammapdf252.svg – CC-BY-SA-4.0
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Sequential Model Overview

ConvCNP
Gordon et al.
(2020)

Input

Output

Step 1: Rain gauge interpolation Step 2: Combination of Rain Gauge Field and Radar Grid

Input U-Net
Ronneberger et al. (2015)

OutputRain gauge measurements

Mean RG field  𝝅 " 𝜶 " 𝜽

ConvCNP 𝛑, 𝜶 and 𝜃

Radar grid

Radar-corrected mean RG field 𝝅 " 𝜶 " 𝜽

𝜋 𝛼 𝜃

𝜋

𝛼

𝜃

Gordon et al. (2020) "Convolutional Conditional Neural Process"
Ronneberger et al. (2015) "U-Net: Convolutional Networks for Biomedical Image Segmentation"
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Overall RMSE:

Overall scatter:

Overall log-bias:

Comparison: RG-Only vs. RG-Radar vs. Baseline

Data: Hourly accumulations of 231 
rain gauges for 2023

CNP: Learning a Conditional Neural 
Process on rain gauges only

CNP/U-Net: Learning to combine 
CNP with radar

CombiPrecip: Use Kriging to 
interpolate difference between rain 
gauge and radar, separately for 
every time step
Sideris et al. (2014)

CNP/U-Net
Combi
Precip CNP

January 140 54 41
February 121 54 53
March 122 57 56
April 127 83 25
May 133 92 10
June 118 106 11
July 128 91 16
August 112 108 15
September 116 103 16
October 145 62 28
November 156 56 23
December 150 52 33

CNP/U-Net Combi
Precip

CNP

0.93 0.98 1.32

CNP/U-Net Combi
Precip

CNP

1.69 1.85 2.16

CNP/U-Net Combi
Precip

CNP

-0.29 -0.32 0.10

Sideris et al. (2014) "Real-time radar-rain-gauge merging using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland"

Number of stations with lowest RMSE:
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Binary flag per test category:

• Physical limit exceeded
• Climatological limit exceeded
• Inconsistent to another variable
• Spatially inconsistent

Our Former Quality Information

Variable Instrument Reference time Value P C I S

rre150z0 11356 05.01.2019 23:20 -23 1 0 0 0
rre150d0 9838 03.02.2019 5.5 0 0 0 1
tre200s0 20324 01.02.2019 08:10 11.5 0 1 1 0
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+ Data model is straightforward:
1. Summarize test outcomes into categories
2. Store in binary attributes right along measurement

+ Categories are self-explanatory

– Categories combine tests with greatly varying sensitivity and specificity
– Customers typically cannot integrate flags into their own databases

Internal and external users could not make effective use of flags beyond P

Pros and Cons
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• Store outcome of every test
• Use Naïve Bayes to compute 

probabilistic plausibility of 
measurements from test outcomes and 
likelihoods

• Users specify threshold for their 
application, either numerically or with a 
"traffic light" code

Probabilistic Plausibility Sigg et al. (2017)

impossible implausible suspect plausible

0 1

Measurement Test Passed
4614406274 8 N
4614406274 112 Y
4614406274 236 Y

C. Sigg, M. Abbt, D. van Geijtenbeek and M. Musa (2017) "Probabilistic Plausibility of Surface Data"
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Expert treatment is the reference:

Expert inspection is incomplete: measurements are assumed to be 
plausible unless they are explicitly implausible

Definition of Plausibility

A measurement is plausible if it is confirmed
during expert inspection.

A measurement is implausible if it is corrected or suppressed
during expert inspection.
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• Plausibility of automated 2 m air temperature measurements
• 10 min granularity → 144 measurements per day
• Probabilities estimated from one year of data (values rounded)

Calculation Example
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About 1 in 670 measurements is implausible:

Estimated Prior

0 1
Plausibility

0.9985

Test likelihood
!𝑝(𝑡!|𝑞)

Prior !𝑝(𝑞) Posterior !𝑝(𝑞|𝑡!)
Test likelihood

!𝑝(𝑡"|𝑞)
!𝑝(𝑞|𝑡", 𝑡!)
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Limit of absolute difference to redundant measurement:
• 0.014 % false positive rate
• 5.7 % of implausible measurements fail consistency test

Consistency Test

Test likelihood
!𝑝(𝑡!|𝑞)

Prior !𝑝(𝑞) Posterior !𝑝(𝑞|𝑡!)
Test likelihood

!𝑝(𝑡"|𝑞)
!𝑝(𝑞|𝑡", 𝑡!)
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Measurement fails consistency test, 𝑡! = 0:

Estimated Posterior

Test likelihood
!𝑝(𝑡!|𝑞)

Prior !𝑝(𝑞) Posterior !𝑝(𝑞|𝑡!)
Test likelihood

!𝑝(𝑡"|𝑞)
!𝑝(𝑞|𝑡", 𝑡!)

0 1
Plausibility

0.62 0.9985
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Combining Test Outcomes

Test likelihood
!𝑝(𝑡!|𝑞)

Prior !𝑝(𝑞) Posterior !𝑝(𝑞|𝑡!)
Test likelihood

!𝑝(𝑡"|𝑞)
!𝑝(𝑞|𝑡", 𝑡!)

Minimum variability test:
• 0.0015 % false positive rate
• 1.2 % of implausible measurements fail minimum variability test



30

Measurement also fails the minimum variability test, 𝑡" = 0:

Updated Posterior

Test likelihood
!𝑝(𝑡!|𝑞)

Prior !𝑝(𝑞) Posterior !𝑝(𝑞|𝑡!)
Test likelihood

!𝑝(𝑡"|𝑞)
!𝑝(𝑞|𝑡", 𝑡!)

0 1
Plausibility

0.620.0026



31

– Cannot store test outcomes in fixed-length bitmask

– Computation necessary to obtain plausibility

+ Outcomes contribute according to their evidence:
• Test outcomes increase or decrease plausibility
• Accumulate weak evidence of several test outcomes into strong 

evidence

+ Combine outcomes from independent QC systems:
• Incorporate new test outcomes whenever they arrive
• Re-calculate plausibility using Naïve Bayes

Discussion
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Three benefits of machine learning for QC:
1. Statistical evaluation provides the basis 

for further development and optimization 
of QC tests

2. ML models can capture complex 
relationships between different data 
modalities

3. Computing the probabilistic plausibility 
summarizea all available test outcomes 
into a simple but well defined score

Conclusion

Radar-corrected 
mean RG field


