

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss **MeteoSwiss** 

# **Towards Camera Based Visibility Estimation**

MET Alliance ET AUTO OBS Meeting – June 3<sup>rd</sup>, 2020

Christian Sigg – Surface Data Department christian.sigg@meteoswiss.ch

+
\*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+</t

#### 16:20 UTC







#### 16:30 UTC

























#### 17:10 UTC









•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•</t





10

### Outline

Introduction: Motivation and Current State at MeteoSwiss

- Physical Model Approach
- Evaluation
- Improving the Camera System
- Improving the Estimation Algorithm: Learning Approach

+
\*
\*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+</t

### **Motivation**

- 1. Increase spatial and temporal resolution of visibility observations
- 2. Generate additional benefit from existing camera network
- 3. Panorama cameras see more of the atmosphere than scatterometers:



# $\rightarrow$ Potential for estimates that are more representative when the atmosphere is inhomogeneous

## Our Current State

35 cameras, many along GAFOR routes

12 cameras provide estimates of the prevailing visibility every 10 min

- Operative since October 2018
- Provided on «best effort» basis only

### Limited scope:

- Assist forecasters with GAFOR
  - production
- Data is restricted to internal use



MeteoSwiss camera network (as of May 2020), visibility is estimated at stations highlighted in red

### Outline

#### Introduction: Motivation and Current State at MeteoSwiss

### Physical Model Approach

**Evaluation** 

Improving the Camera System

Improving the Estimation Algorithm: Learning Approach

+
\*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+</t

### **Physical Model Approach**

- 1. Dark Channel prior: most local patches in hazefree images contain pixels with low intensities in at least one channel [He *et al.*, 2011]
- 2. Airlight scattered into line of sight raises minimum intensity [Koschmieder, 1924]
- 3. Atmospheric scattering coefficient is inversely related to visibility

#### **Motivation:**

- Avoid tuning/adaptation for every camera site
- Well understood behavior of estimation algorithm



 $L(d) = L_{\infty}(1 - e^{-\sigma d})$ 

 $v \propto 1/\sigma$ 

## Generating the Depth Map

- Known geolocation coordinates of cameras
- Visual matching of additional degrees of freedom



Tool for generating depth maps by visual correspondence

#### Alternative: Pose estimation from correspondence points [Haralick et al., 1989]

### **Estimation Method**



 $\mathbf{x}_{\mathbf{x}} = \mathbf{x}_{\mathbf{x}} + \mathbf{x}_{\mathbf{x}} +$ 

### Outline

Introduction: Motivation and Current State at MeteoSwiss Physical Model Approach Evaluation

Improving the Camera System

Improving the Estimation Algorithm: Learning Approach

4
8
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7</t

### **Evaluation Methodology**

# Comparison with trained observers, labeling the prevailing visibility of panorama sequences:



### **Evaluation Data**

- 238 panoramic sequences in total
- Representative selection of sites: Swiss plateau, valleys, mountain tops
- Considers all seasons and many different weather and ground conditions



### **Evaluation Results**

In general, algorithmic estimates are within observers' uncertainty:



26 images from the Château d'Oex camera

21

#### But there are systematic deviations for certain conditions

### Outline

Introduction: Motivation and Current State at MeteoSwiss Physical Model Approach Evaluation

Improving the Camera System

Improving the Estimation Algorithm: Learning Approach

+
\*
\*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+</t

## Failure Cases Related to Camera System

#### **Enclosure**:

- Mis-alignment of moving head
- **Occlusions**

### **Image acquisition:**

- Stray light in lens
- Saturation of dynamic range

### Image processing:

- **Compression** artefacts
- Artificial edge enhancement











On-going WTO procurement to replace existing cameras:

- Further hardening against weather exposure: increased heating power, mechanical robustness, ...
- Increased sensor dynamic range and resolution
- Raw image acquisition: defined white balance, disabling image "enhancements" (denoising, local contrast enhancement, ...), lossless compression

### Outline

Introduction: Motivation and Current State at MeteoSwiss

- Physical Model Approach
- Evaluation
- Improving the Camera System
- Improving the Estimation Algorithm: Learning Approach



### Failure Cases Related to Estimation Algorithm

Complex atmospheric conditions that don't fit the physical model assumptions:



Visibility [km]: 11.1544275183617



### Improvements to Estimation Algorithm

Increase model flexibility with **learning based** approach:

- Neural network classifies pixels as in front or behind the visibility limit
- Expert labels: segmentation into visible and non-visible regions
- Train network to predict label mask











### **DNN Classifier Architecture**

Transformation of input image and depth map across several layers into visibility mask:



የዋየም የምም የምምም የም ምምም የምም የምም የምም የምምምም የምምምም የምምምም የምምም የምምምም የምምም የምምምም የምምም የምምም የምምም የምምም የምምም የምምምም የም

Input image Depth map

7x7 conv, 64

### **Summary and Conclusions**

- Secondary use of existing infrastructure improves ROI
- Have to compensate for design choices that are not ideal for secondary application
- We have an operational pipeline for visibility estimation
- It takes effort from acceptable performance on average to eliminating all failure cases
- Investment in sensor system pays off at later stages

### **Summary and Conclusions**

#### **Operational availability:**

- Monitoring: automated and feedback from users
- Maintenance of cameras, often in remote locations
- Robust software that can deal with various failures: data availability and integrity
- Automated, but still needs personel resources for first, second and third level support

### Bibliography

Haralick, R., H. Joo, C. Lee, X. Zhuang, V. Vaidya and M. Kim (1989). *Pose Estimation from Corresponding Point Data*. IEEE Trans. Systems, Man and Cybernetics, 19(6), 1426-1446. He, K., J. Sun and X. Tang (2011). *Single Image Haze Removal Using Dark Channel Prior*. IEEE Trans. PAMI, 33(12), 2341-2353.

He, K., X. Zhang, S. Ren and J. Sun (2016). *Deep Residual Learning for Image Recognition*. Proc. CVPR, 770-778.

Koschmieder, H. (1924). *Theorie der horizontalen Sichtweite*. Beitr. Phys. freien Atm., 12:33-53, 171-181.

31

Sutter, T., F. Nater and C. Sigg (2016). *Camera Based Visibility Estimation*. Proc. CIMO TECO, Vol. 2.